If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8d^2+5d-7=0
a = 8; b = 5; c = -7;
Δ = b2-4ac
Δ = 52-4·8·(-7)
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{249}}{2*8}=\frac{-5-\sqrt{249}}{16} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{249}}{2*8}=\frac{-5+\sqrt{249}}{16} $
| 4+x=-35 | | 8h2+5h−7=0 | | 8h^2+5h−7=0 | | 99=3x+2 | | 22n=20 | | 5-6x=4x+1 | | 9+13x-4=7x+77-2x | | 1.5x=x+9 | | 1.5x=x=9 | | -1x/7=7x/49-x/14 | | 2.7x-11.83=4.1 | | 3x+18=12x+18 | | 4-5x/7=2+5x/49-x/14 | | 2x+7-1=-x | | (4w^2-25)=0 | | 7y-33=4y | | 5x+13=14X+13 | | £75x=£30 | | 1/4(16x+32)-16=-1/2(4x-12) | | 60x+24=6x+72 | | 12(x)^1/11-9=0 | | 3x+-4=34 | | 1/2(18x+8)=-2/3(21x-12) | | 9(5+x)=36 | | m/9=15/9 | | 2(2w+5=46 | | 16x-(9x-4)=60 | | x+x-6+x-6=180 | | 48/n=12 | | 19x-(9x-3)=73 | | 17-7x=-32 | | 4.1=-2y+16.9 |